Solutions - Homework 2

(Due date: February 1st @ 5:30 pm)

Presentation and clarity are very important! Show your procedure!

PROBLEM 1 (32 PTS)

- In ALL these problems (a, b, c), you MUST show your conversion procedure. No procedure = zero points.
- a) Convert the following decimal numbers to their 2's complement representations: binary and hexadecimal. (12 pts) ✓ -31.3125, 37.5078125, -256.65625, -391.25.
 - □ +31.3125 = 011111.0101 → -31.3125 = 100000.1011 = 0xE0.B
 - +37.5078125 = 0100101.1000001 = 0x25.82
 - □ +256.65625 = 0100000000.10101 \rightarrow -256.65625 = 1011111111.01011 = 0xEFF.58
 - +391.25 = 0110000111.01 → -391.25 = 1001111000.11 = 0xE78.C
 - b) Complete the following table. The decimal numbers are unsigned: (8 pts.)

Decimal	BCD	Binary	Reflective Gray Code		
397	001110010111	110001101	101001011		
318	001100011000	100111110	110100001		
835	100000110101	1101000011	1011100010		
256	001001010110	10000000	11000000		
232	001000110010	11101000	10011100		
114	000100010100	1110010	1001011		
206	00100000110	11001110	10101001		
259	001001011001	10000011	110000010		

c) Complete the following table. Use the fewest number of bits in each case: (12 pts.)

•	REPRESENTATION						
Decimal	Sign-and-magnitude	1's complement	2's complement				
-133	1 10000101	101111010	101111011				
-256	1 10000000	101111111	10000000				
-152	1 10011000	101100111	101101000				
-85	11010101	10101010	10101011				
-52	1110100	1001011	1001100				
105	01101001	01101001	01101001				

PROBLEM 2 (20 PTS)

a) What is the minimum number of bits required to represent: (2 pts)

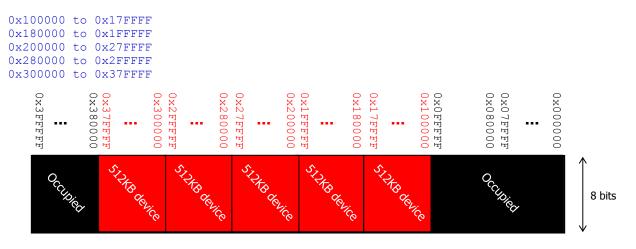
\checkmark	Memory addresses from 0 to 8192?	\checkmark	32767 symbols?
	$[\log_2(8192 + 1)] = 14$	\checkmark	$[\log_2(32767)] = 15$

- b) A microprocessor has a 28-bit address line. The size of the memory contents of each address is 8 bits. The memory space is defined as the collection of memory positions the processor can address. (6 pts)
 - What is the address range (lowest to highest, in hexadecimal) of the memory space for this microprocessor? What is the size (in bytes, KB, or MB) of the memory space? 1KB = 2¹⁰ bytes, 1MB = 2²⁰ bytes, 1GB = 2³⁰ bytes

Address Range: 0×0000000 to $0 \times FFFFFFF$. With 28 bits, we can address 2^{28} bytes, thus we have $2^{20}2^8 = 256$ MB of address space.

- A memory device is connected to the microprocessor. Based on the size of the memory, the microprocessor has assigned the addresses 0xB1C0000 to 0xB1FFFFF to this memory device. What is the size (in bytes, KB, or MB) of this memory device? What is the minimum number of bits required to represent the addresses only for this memory device?

As per the figure, we only need 18 bits for the address in the given range								Address	8 bits
(where the memory is located).	1011 (0001	1100	0000	0000	0000	0000:	0xB1C00000	
(1011 (0001	1100	0000	0000	0000	0001:	0xB1C00001	
Thus, the size of the memory is $2^{18} = 256$ KB.	•••							Ļ	i
	1101 (0001	1111	1111	1111	1111	1111:	0xB1CFFFFF	
									-


- c) The figure below depicts the entire memory space of a microprocessor. Each memory address occupies one byte. (12 pts)
- What is the size (in bytes, KB, or MB) of the memory space? What is the address bus size of the microprocessor?

Address space: 0×000000 to $0 \times 3FFFFF$. To represent all these addresses, we require 22 bits. So, the address bus size of the microprocessor is 22 bits. The size of the memory space is then $2^{22} = 4$ MB.

- If we have a memory chip of 512KB, how many bits do we require to address 512KB of memory?

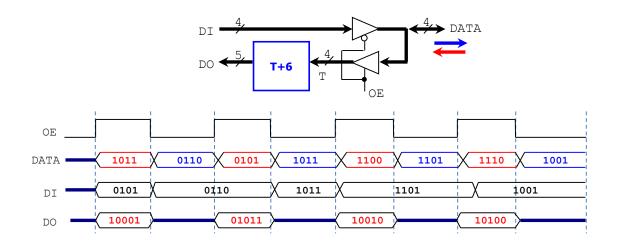
 $512KB = 2^92^{10}$ bytes. Thus, we require 19 bits to address only this memory device.

- We want to connect the 512KB memory chip to the microprocessor. Provide a list of all the possible address ranges that the 512KB memory chip can occupy. You can only use the non-occupied portions of the memory space as shown below.

PROBLEM 3 (38 PTS)

a) Perform the following additions and subtractions of the following unsigned integers. Use the fewest number of bits n to represent both operators. Indicate every carry (or borrow) from c_0 to c_n (or b_0 to b_n). For the addition, determine whether there is an overflow. For the subtraction, determine whether we need to keep borrowing from a higher byte. (8 pts)

Example (n=8): \checkmark 54 + 210 $54 = 0 \times 36 = 0 \times 0 \times 1 \times 10 \times 10 \times 10 \times 10 \times 10^{-11}$ $54 = 0 \times 20 \times 10^{-11} \times 10^{-11} \times 10^{-11} \times 10^{-11} \times 10^{-11}$ Overflow! $\rightarrow 1 \times 0 \times 0 \times 10^{-11} \times 10^{-11} \times 10^{-11}$	$\checkmark 77 - 194$ Borrow out! $\qquad \qquad $
✓ 211 + 99 ✓ 101 + 35	 ✓ 51 - 96 ✓ 256 - 57
$n = 8 \text{ bits}$ Overflow! $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	$n = 7 \text{ bits}$ Borrow out! \longrightarrow a^{1} a^{2} $a^{$
$310 = 0 \times 136 = 1 \ 0 \ 0 \ 1 \ 1 \ 0 \ 1 \ 1 \ 0$ $n = 7 \text{ bits}$ $Overflow!$ $101 = 0 \times 65 = 1 \ 1 \ 0 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 1$ $0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0$	$0 \times D3 = 1 \ 0 \ 1 \ 0 \ 0 \ 1 \ 1$ $n = 9 \text{ bits}$ No Borrow Out $0 = 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \$
$136 = 0 \times 88 = 1 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0$	$199 = 0 \times 0C7 = 0 \ 1 \ 1 \ 0 \ 0 \ 1 \ 1 \ 1$


- b) We need to perform the following operations, where numbers are represented in 2's complement: (24 pts) ✓ -77 + 216 -62 + 99 ✓ -129 + 128 ✓ -122 - 26 ✓ 313 + 711 ✓ 167 + 512 For each case: ✓ Determine the minimum number of bits required to represent both summands. You might need to sign-extend one of the summands, since for proper summation, both summands must have the same number of bits. \checkmark Perform the binary addition in 2's complement arithmetic. The result must have the same number of bits as the summands. \checkmark Determine whether there is overflow by: Using c_n, c_{n-1} (carries). i. Performing the operation in the decimal system and checking whether the result is within the allowed range for ii. n bits, where n is the minimum number of bits for the summands. ✓ If we want to avoid overflow, what is the minimum number of bits required to represent both the summands and the result? n = 9 bits n = 9 bits c₉⊕c₈=0 c₉⊕c₈=0 $c_{3}=0$ $c_{3}=0$ $c_{5}=0$ $c_{5}=0$ $c_{1}=0$ $c_{2}=0$ $c_{2}=0$ $c_{2}=0$ No Overflow No Overflow -77 = 1 1 0 1 1 0 0 1 1 +-129 = 1 0 1 1 1 1 1 1 1 + 216 = 0 1 1 0 1 1 0 0 0128 = 0 1 0 0 0 0 0 0 0 $139 = 0 \ 1 \ 0 \ 0 \ 1 \ 0 \ 1 \ 1$ $-1 = 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1$ $-77+216 = 139 \in [-2^8, 2^8-1] \rightarrow \text{no overflow}$ $-129+128 = -1 \in [-2^8, 2^8-1] \rightarrow \text{no overflow}$ n = 8 bits n = 11 bits $C_8 \oplus C_7 = 1$ c₁₁⊕c₁₀=1 $c_9 = 1$ $c_8 = 1$ $c_7 = 1$ $c_6 = 1$ $c_6 = 1$ $c_5 = 1$ $c_4 = 1$ 10=1 Overflow! Overflow! -122 = 1 1 0 0 0 1 0 +313 = 0 0 1 0 0 1 1 1 0 0 1 + $-26 = 1 \ 1 \ 1 \ 0 \ 0 \ 1 \ 1 \ 0$ 711 = 0 1 0 1 1 0 0 0 1 1 1 0 1 1 0 1 1 0 0 10000000000 $313+711 = 1024 \notin [-2^{10}, 2^{10}-1] \rightarrow \text{overflow!}$ $-122-26 = -148 \notin [-2^7, 2^7-1] \rightarrow \text{overflow}!$ To avoid overflow: To avoid overflow: n = 9 bits (sign-extension) n = 12 bits (sign-extension) c₁₂⊕c₁₁=0 $C_0 \oplus C_8 = 0$ $\begin{array}{c} c_{10}=1\\ c_{9}=1\\ c_{9}=1\\ c_{7}=1\\ c_{7}=1\\ c_{6}=1\\ c_{6}=1\\ c_{6}=1\\ c_{4}=1\\ c_{4}=1\\ c_{3}=1\\ c_{1}=1\\ c_{1}=1\\ c_{1}=1\end{array}$ No Overflow <mark>.</mark>1 No Overflow -122 = 1 1 1 0 0 0 0 1 0 + 313 = 0 0 0 1 0 0 1 1 1 0 0 1 + $-26 = 1 \ 1 \ 1 \ 1 \ 0 \ 0 \ 1 \ 1 \ 0$ 711 = 0 0 1 0 1 1 0 0 0 1 1 1 101101100 1024 = 0 1 0 0 0 0 0 0 0 0 0 0 $-122-26 = -148 \in [-2^8, 2^8-1] \rightarrow \text{no overflow}$ $313+711 = 1024 \in [-2^{11}, 2^{11}-1] \rightarrow \text{no overflow}$ n = 8 bits n = 11 bits $C_8 \oplus C_7 = 0$ c₁₁⊕c₁₀=0 $c_{8=1}^{c_{8}=1}$ $c_{7=1}^{c_{1}=1}$ $c_{5}=0$ $c_{4}=0$ $c_{4}=0$ $c_{3}=0$ $c_{2}=1$ $c_{1}=0$ $c_{1}=0$ P 0=0 No Overflow No Overflow -62 = 1 1 0 0 0 0 1 0 +167 =0 0 0 1 0 1 0 0 1 1 1 + 99 = 0 1 1 0 0 0 1 1 512 = 0 1 0 0 0 0 0 0 0 0 0 $37 = 0 \ 0 \ 1 \ 0 \ 0 \ 1 \ 0 \ 1$ 679 = 0 1 0 1 0 1 0 0 1 1 1 $-62+99 = 37 \in [-2^7, 2^7-1] \rightarrow \text{no overflow}$ $167+512 = 679 \in [-2^{10}, 2^{10}-1] \rightarrow \text{no overflow}$
- c) Get the multiplication results of the following numbers that are represented in 2's complement arithmetic with 4 bits. (6 pts) ✓ 0101×0100, 1001×0111, 1011×1101.

0 1 0 0 0 1 1 0	x 0 1 1 1 x 1 0 0 1	•	0 1 0 1		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	× 🏓	0 1 0 1 x 0 0 1 1	
0 0 0 0 0 1 0 0 0 1 0 0		0	0 1 1 1 1 1			0	0 1 0 1 1 0 1 0 0 -	
011000	0	1 1	0 0	0 1		0 0	1 1 1 1 +	
0 1 1 0 0 0	! 1	0 0	1 1	1 1		0 0	1 1 1 1	

PROBLEM 4 (10 PTS)

Complete the timing diagram (signals *DO* and *DATA*) of the following circuit. The circuit in the blue box computes the unsigned summation T+6, with the result having 5 bits.
 For example: if T=1001 -> DO=1001 + 0110 = 01111 - 15 T=1100 -> DO=1101+0110 = 10011

For example: if T=1001 \rightarrow DO=1001 + 0110 = 01111. If T=1100 \rightarrow DO=1101+0110 = 10011.

